Related Articles
Forward article link
Share PDF with colleagues

EV revolution could stall due to mineral shortages

More planning is required to ensure adequate supply, researchers say

A potential shortage of minerals needed to produce the billions of batteries required to power electric vehicles (EVs) risks slowing down the transition from internal combustion engines (ICEs) to cleaner forms of transport, according to a team of UK-based scientists.

Researchers working on the Security of Supply of Mineral Resources (SOS Minerals) multi-institution research programme, partly funded by the UK government, have crunched the numbers and come up with some daunting-looking headline figures.

They looked at the amount of minerals required to make all cars and vans in the UK electric by 2050—based on the current UK fleet size of some 31.5mn vehicles—and for all new sales to be purely battery electric by 2035. Both are recommendations contained in a report by the parliamentary Committee on Climate Change (CCC). In early June, these were being considered for adoption by the UK government, whose current pledge is limited to eliminating ICE sales by 2040.

The team concluded that just to meet these UK targets, assuming the vehicles use next-generation NMC 811 batteries, would require just under two times the world's total annual cobalt production, nearly all world production of neodymium, three quarters of the world's lithium production and at least half of the world's copper production, based on 2018 data.

Just ensuring that EVs meet UK demand for new cars and vans from 2035, would require the UK to import the equivalent of European industry's entire cobalt consumption, according to a letter sent to the CCC in early June. It was signed by Richard Herrington, head of the Earth Sciences department at London's Natural History Museum, and other scientists involved in the SOS Minerals programme.

Scaling that up to a global level would, of course, be an even a greater challenge. By 2050, some forecasts predict, there will be at least 2bn cars on the world's roads. Herrington estimates that if all of those were to be EVs, annual production of neodymium and dysprosium would need to increase by 70% and stay at that level until 2050. On the same basis, annual copper output would need to more than double and cobalt output would need to increase by at least 3.5 times to meet global demand.

Herrington told Petroleum Economist that increasing minerals production to meet the envisaged increase in the EV fleet—as well as for the additional renewable energy and storage infrastructure required to power the fleet and extract the minerals—would be challenging but not impossible.

"[The ambition] is laudable, and it could be plausible. but it needs greater thought as to where those materials might come from," he said.

Many of the rare earths and other minerals used for batteries are mined in politically unstable parts of the world, such as parts of sub-Saharan Africa. Herrington believes they could be sourced closer to the main EV markets, providing greater security of supply, as well as boosting overall production. That includes Europe, where, for example, more cobalt could be recovered from copper mines than is currently the case, if new technologies were deployed, he said.

The increase in renewable energy infrastructure needed to provide power for EVs would also consume more metals and minerals. Wind turbines require a lot of steel, while solar panel installations consume several scarce minerals, such as high purity silicon, indium, tellurium and gallium. Extracting the minerals themselves is also a power-hungry process, adding to demand.

Then there are the transmission lines needed to connect them to the grid. Herrington notes that a power station requires fewer copper-based cables than hooking up the hundreds of wind turbines required to produce the same amount of power.

"You could be more aggressive with carbon capture and still continue with hydrocarbons to generate power," he said.

However, given the faltering progress of efforts to get carbon capture and storage moving in the UK and elsewhere in the world, for now, this technology seems unlikely to be able to play more than a bit part in efforts to allow coal and gas to play a long-term role in the energy sector.

Herrington does not believe the potential minerals supply crunch necessarily means the world will have to use more oil for longer in the transport sector.

"I don't think we have to. We just have to make sure that we gear up, so that the alternatives are available in the quantities that we want," he said.

 

Also in this section
Cyprus pursues LNG import and export options
11 October 2019
In early 2020, the Cypriot government will award LNG supply contracts, while revisiting LNG export plans
Gas ‘essential’ to the energy transition: Dudley
10 October 2019
Hitting net-zero carbon emissions is impossible without natural gas, CCS and hydrogen, says departing BP leader
Infrastrata buys Titanic builder
9 October 2019
Gas storage developer takes the unusual step of purchasing a heavy engineering firm to work on its proposed UK project